
American Environmental and Engineering Consultants (AEEC, LLC)
1925 Ballenger Ave, Suite 450,
Alexandria, VA 22314
http://www.americanconsultants.com
Phone: (703) 317-0800

Text2PTO Proof of Concept White Paper

Version 1.0

24 March 2015

http://www.americanconsultants.com/

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

Table of Contents
1 Introduction..1

1.1 Background...1

2 Problem and Scope..2

2.1 Requirements for Prototype..2

2.2 Scope and Assumptions..2

2.3 High Level Objective..2

3 Solution Analysis...3

3.1 PDF Brief Introduction...3

3.2 Selecting a Tool..3

3.3 Solution Overview..3

4 Tool Selection..4

4.1 Criteria for Tool Selection..4

4.2 First Cut...5

4.3 Second Cut..7

4.4 Final Cut..8

4.4.1 Acrobat Pro..8

4.4.2 LibreOffice..9

4.4.3 PDFxStream...10

4.5 Recommended Product...12

5 Prototype Design...13

5.1 Components and Flow..13

5.2 Output Format...15

5.3 Custom Processing..15

5.3.1 Image Processing...15

5.3.2 Table Processing..15

5.3.3 Formula Processing...17

5.4 Exception Handling...18

5.5 Performance..18

5.6 XML4IP Format..18

5.7 Results...19

5.8 Limitations..19

i

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

5.9 Conclusion..20

List of Figures
Figure 1: PDFxStream - Content Parsing..11

Figure 2: PDFxStream - Data Elements..11

Figure 3: Component and Flow Diagram..13

Figure 4: PDFxStream - Table Structure...16

List of Tables
Table 1: Comparison of PDF Text Extraction Tools...6

Table 2: Comparison of PDF Text Extraction Tools...8

Table 3: Mapping between PDF and XHTML Elements..15

Table 4: Formula Extraction Comparison...18

Table 5: Test Results...19

ii

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

1 Introduction

This white paper presents details about a Text2PTO prototype for extracting text, layout, and
formatting information from PDF files that have text behind them. A proof-of-concept (POC)
was conducted to design a solution that could accept incoming PDF files and extract text content
along with formatting and layout information. This document is presented by AEEC’s
Application Architecture Software Engineering Team (AASET) to the United States Patent and
Trademark Office (USPTO).

1.1 BACKGROUND

USPTO currently accepts patent applications through its Electronic Filing System (EFS). EFS
accepts PDF documents during application submission. Applicants can use various tools to
create PDFs for EFS submission. More than 45% of these submitted PDFs have text behind
them. Due to the differences in the COTS or open source tools used by the applicant to generate
the PDFs, the format and structure of the PDFs differ. Currently, USPTO relies on OCR to
extract text from TIFF representations of these submitted PDFs. The OCR-extracted text and
layout information is used to generate XML4IP documents.

1

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

2 Problem and Scope

USPTO’s current approach of using OCR to extract text does not produce fully reliable results.
There would be great advantages, including an increase in reliability, if it were possible to use
the applicant submitted text contained within the PDFs for generating XML4IP documents.

2.1 REQUIREMENTS FOR PROTOTYPE

USPTO requirements for the proposed Text2PTO prototype are as follows:

 The system shall support monitoring incoming files to the INPUT Folder
 The system shall check if the given input file is a scanned or text based PDF file
 The system shall capture the file metadata that can be used to analyze file formats and

identify their success rate for extracting text
 The system shall handle exceptions and capture the cause of exception
 The system shall extract the text and formatting information from the PDF file and

generate a valid XML file
 The system shall support batch processing

2.2 SCOPE AND ASSUMPTIONS

 All PDF files to be extracted will be present in a designated folder.
 Prototype testing will be done on samples provided by the USPTO team.
 Performance and scalability is not a primary concern while designing the prototype
 There is no pre-defined format for the generated output XML. The prototype team can

define their own format.
 The prototype team is not responsible for generating XML files in XML4IP format.

2.3 HIGH LEVEL OBJECTIVE

Research the PDFs from EFSWeb submissions that contain text to determine if the text in the
PDFs can be extracted to an XML format that may eventually be converted to XML4IP
documents.

Conduct market research and develop a prototype to identify a tool that can extract text, format,
and layout information consistently and reliably from PDFs that have text behind them.

2

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

3 Solution Analysis

3.1 PDF BRIEF INTRODUCTION

A PDF file encapsulates a complete description of a fixed-layout flat document, including the
text, fonts, graphics, and other information needed to display it. The appearance of everything
that each page contains is completely specified. The structure of a PDF file does not match the
structure of the PDF document it describes. PDF documents are display-oriented and the
specification is not built to address text extraction concerns. The underlying structure of a PDF is
multi-layered and very complex. Elaborating on the intricacies of extracting text from a PDF is
outside the scope of this document. However, additional details can be found by referring to the
following articles:

http://partners.adobe.com/public/developer/tips/topic_tip31.html

http://www.planetpdf.com/developer/article.asp?
ContentID=navigating_the_internal_struct&page=0

3.2 SELECTING A TOOL

As discussed in the previous section, text / format extraction from a PDF is a complex task.
There are several tools in the market that have sought to solve this problem with varying degrees
of success. Most of these tools do a good job extracting text from PDFs, but they lack reliability
and consistency in extracting the document’s format, layout, and structures. Developing a tool
from scratch to extract text, format, and layout information from PDF documents would be a
very complex task, and may not produce an acceptable output. Therefore, this prototype effort
focuses instead on identifying a tool that could get as close as possible to our objective.

3.3 SOLUTION OVERVIEW

We followed a 3-step process to identify and develop a solution:

1. Identify format, layout, and structural elements of PDF documents to be extracted.
2. Conduct market research on tools that can extract the identified elements from PDFs.
3. Develop a Java-based solution around selected tools in order to:

a. Integrate the tool in the USPTO environment
b. Support batch processing
c. Output an XML document
d. Address shortcomings of the tool

3

http://www.planetpdf.com/developer/article.asp?ContentID=navigating_the_internal_struct&page=0
http://www.planetpdf.com/developer/article.asp?ContentID=navigating_the_internal_struct&page=0
http://partners.adobe.com/public/developer/tips/topic_tip31.html

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

4 Tool Selection

This section discusses the criteria and the process used to select the tool that will be used to
extract text, metadata, format, and layout information from PDF files.

4.1 CRITERIA FOR TOOL SELECTION

A following set of criteria were defined to compare and select tools for this prototype:

Extraction Capabilities: The primary criterion for tool selection is to extract text along with
layout, format, and structure information. With that in mind, the following list of elements that
the selected tool needed to extract from PDFs was created and includes:

 Text
 Underlines
 Strikethrough
 Bold and Italics
 Lists
 Tables
 Images
 Mathematical Formulas
 Chemical Formulas
 Indentation

Extensibility: It is very difficult for any of the tools to produce a result that exactly matches
USPTO’s requirement. Therefore, it is important that the selected tool provide some means of
extending / customizing / refining its features.

Maturity: The tool should already be in the market and should be in use by at least a few large
customers.

Integration: We should be able to integrate the tool into an existing or custom application built
for this purpose. As a result, it should offer an API or a service.

Price: The overall cost of deployment for the tool needs to be considered.

Deployment Environment: The tool should be able to deploy with ease and on different
environments.

4

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

Support: Support should be available in the form of a license or active user community.

5

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

4.2 FIRST CUT

A market research study was conducted to identify tools that could be used for the purpose of this prototype. After market research, 13
tools were selected for further analysis in order to identify the best tool for the prototype. The results of this study comparing each of
the 13 tools to our selection criteria are provided in Table 1.

Name API/Tools Open
Source

License Support Environment Features

Acrobat Pro PDF Library SDK No Contact Adobe for price Yes Windows, UNIX - Support for conversion to PDF/X-1a and
PDF/X-3 standards
- Support for Mac 64-bit platform
- PDF Library SDK includes 17 completely
functional solution samples
- Complete documentation, including an
application programming interface (API)

PDFBox Java Library Yes Apache License 2.0 Its own issue
tracker. Attach PDF
file to get support

Windows, UNIX More Command Line Tools

JPedal - jPedal Java Library-
Extracts text and images
- PDF to HTML5 library

No Server License
Java Library--$699/per
year
PDF Conversion-
$5000+$0.20 per page

Yes (available from
IDR Solutions)

Windows, UNIX - Available as Web Service API
- Uses as Swing Application
- Integration with Server Applications

jPDFText Java Library No jPDFText CPU-Pair
License(s) /$400

Yes (Qoppa
Software)

Windows, UNIX

AbleToExtrac
t

PDF to HTML SDK
Developer Tool

No 1 Developer License /
$2,500

Yes
(Investintech.com)

Windows only
(standalone)

Converts PDF file into different formats Excel,
MSWord etc.

0

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

Name API/Tools
Open

Source License Support Environment Features

PDF2XML Command line tools only Yes GNU General Public
License (GPL), v2

No Windows, UNIX - PDF to XML conversion
- Text extraction
- Vectorial instruction extraction

PoDoFo Portable C++ library Yes GNU Library or Lesser
General Public License
version 2.0

No All Extracts images only. Does not support
extraction of text, font and table.

PDF-Parser Standalone PHP library
http://www.pdfparser.org/

Yes GPLv3 License No Requires PHP
5.3

- Extracts metadata
- Extracts text from ordered pages

PDFExtract https://github.com/
CrossRef/pdfextract

Yes No Requires Ruby
1.9.1 and above

- Open issues with extracting references
- It extracts text

veryPDF Multiple tools available to
extract the data

Yes Commercial License Yes All - User friendly tools
- Supports Mac OS

PDFMiner Command line tools and
PDFMiner library
supports Python

Yes MIT/X License No All - Written entirely in python
- Supports various fonts
- PDF to HTML Conversion
- Tagged content extraction

LibreOffice Java and C++ APIs Yes Mozilla Public License
v2.0

Community Support
& Professional
support from
Collabora

Windows, Mac,
Linux

PDFxStream Java Library No $5000 per server $1500 for 2 year
support

Windows, Unix,
Mac

- Text, Image and Form extraction
- Support for Unicodes, embedded and
standard fronts
- Table extraction utilities
- Handlers to customize output format

Table 1: Comparison of PDF Text Extraction Tools

1

https://github.com/CrossRef/pdfextract
https://github.com/CrossRef/pdfextract
http://www.pdfparser.org/

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

The following five (5) tools were eliminated from further consideration because of their inherent
limitations:

jPDFText

 Extracts only text

 Unable to extract font, tables, strikethrough lines, etc.

PDF2XML

 No text format information
 Does not provide Developer Libraries
 Extracts only plain text
 No professional support and community not active

PoDoFo

 Accepts only simple PDF files to extract text
 No Commercial Support available for this product

PDFExtract

 Does not extract all required format information

 Not mature enough

 No product support

PDF-Parser

 Only simple text extraction

 No product support

4.3 SECOND CUT

Each of the eight (8) remaining tools was installed in the development environment and tested
against sample PDF documents that contained all the elements needed for extraction. The results
of this analysis for the 8 tools are shown in Table 2.

0

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

Criteria

A
cr

ob
at

 P
ro

Li
br

e
O

ffi
ce

(S
VG

)

PD
Fx

St
re

am

PD
FB

ox

ve
ry

PD
F

A
bl

eT
oE

xt
ra

ct

JP
ed

al

PD
FM

in
er

Text Yes Yes Yes Yes Yes Yes Yes Yes

Underlines Yes Yes Yes No
Capture as

images
Yes No No

Strike-
throughs

Yes Yes Yes No
Capture as

images
No No No

Bold and
Italics

Yes Yes Yes Yes Yes Yes Yes Yes

Lists No No No No Yes Yes No No

Tables Yes Yes Yes No Yes Yes
Each

cell as
table

No

Images Inconsistent Inconsistent Inconsistent Inconsistent Inconsistent Inconsistent No No

Mathematical
Formulas

No No Inconsistent No No No No No

Chemical
Formulas

No No No As Images As Images As Images No No

Indentation Yes No Yes No Yes No No No

Table 2: Comparison of PDF Text Extraction Tools

Based on the above results, three (3) tools were selected for further analysis: Acrobat Pro,
LibreOffice, and PDFxStream.

4.4 FINAL CUT

In this phase, Acrobat Pro, PDFxStream, and LibreOffice were further analyzed to determine
which would be chosen as the final product. A Java application was developed to interface with
these tools for further testing.

4.4.1 Acrobat Pro

Prior to this phase, ‘Acrobat XI Pro’ software was used to test the conversion capabilities of this
tool. Acrobat also provides an SDK called ‘Adobe PDF Library SDK’ which purports to provide

1

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

the same programmatic capabilities of the GUI tool. Upon experimenting with the SDK, it was
determined that the conversion feature is packaged into another product called ‘Adobe
Livecycle’. Adobe Livecycle Enterprise Suite is an enterprise document and form platform that
helps to capture and process information. One of the modules in the suite is an ‘Export Service’
that takes PDF as an input and generates HTML.

Limitations:
 The ‘Export Service’ is only available for the Windows environment.
 Livecycle is a complete suite that comes with an integrated J2EE server, making

deployment and maintenance more difficult.
 The ‘Export Service’ is a very small component of the suite and is not sold

independently, resulting in a high licensing cost.
 The service is like a black box and it cannot be customized or extended.
 Results were not consistent.
 It does not provide error notifications when elements are missing in the extracted

document. This forces all extracted documents to be compared manually with the original
PDFs for errors.

 There is no support for extracting lists.
 Image retrieval is inconsistent and cannot retrieve vector images
 There is no support for mathematical formula retrieval.
 There is no support for chemical formula retrieval.

4.4.2 LibreOffice

LibreOffice is a complete office suite for creating documents, spreadsheets, presentations,
drawings, etc. The steps for extracting from text using Libre Office are as follows:

 Open Libre Office Writer
 Use the ‘Open’ menu option to open up a PDF file
 Use the ‘Save As’ option to save the PDF file as an ‘.fodg’ document
 The saved ‘.fodg’ document is essentially an Open Document XML-based file format for

representing graphics.

Limitations:

 The main drawback of Libre Office is the generated output format. Though ‘.fodg’ files
are XML-based, they are more suitable for representing graphics than text content.
Parsing and retrieving meaningful content from ‘.fodg’ files would be a challenging task.

 Results were not consistent.
 It does not provide error notifications when elements are missing in extracted documents.

This forces all extracted documents to be compared manually with the original PDFs for
errors.

 There is no support for extracting lists.
 Image retrieval is inconsistent and cannot retrieve vector images
 There is no support for mathematical formula retrieval.
 There is no support for chemical formula retrieval.

2

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

 There is no support for extracting indentations.

4.4.3 PDFxStream

PDFxStream is a Snowtide product. It is written in 100% pure Java and is developed specifically
to extract text and metadata from PDF documents.

How PDFxStream works:

Figure 1 shows how PDFxStream can be integrated into our application to extract text and
metadata. As shown in the figure, PDFxStream parses the PDF file and generates events. The
application output handler can listen to these events and perform an appropriate action (this is
similar to XML parsing using a SAX handler). PDFxStream gives the application access to
content and related metadata at each stage of PDF processing. This gives the application a lot of
flexibility to customize the output at each stage of processing. The application may raise errors
when the tool cannot process any of the elements present in the PDF. This can prevent manual
inspection of output documents.

Limitations:
 There is no support for extracting lists.

o PDFxStream can be extended through a custom Java application to extract list
information from the original PDF documents.

 Image retrieval is inconsistent and cannot retrieve vector images
o PDFxStream partially fixed the vector image retrieval issues. PDFxStream is

planning to provide a fix for vector image retrieval.
 There is no support for mathematical formula retrieval.

o Currently PDFxStream can extract a partial set of special characters. They are
planning to provide a fix for special characters. The other option would be to
extract mathematic formulas as an image by extending the application.

 There is no support for chemical formula retrieval.
o The application can be extended to extract chemical formulas as an image.

As shown above, there are possible solutions that may resolve PDFxStream’s limitations to some
extent by extending the application. The capability of PDFxStream to raise errors when it cannot
process any of the elements will prevent the need for manual inspection of all extracted
documents.

3

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

Figure 1: PDFxStream - Content Parsing

Figure 2: PDFxStream - Data Elements

4

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

4.5 RECOMMENDED PRODUCT

After analyzing the features and limitations of the 3 products, PDFxStream was chosen because
it brings us closest to achieving USPTO’s requirements. PDFxStream is superior for the
prototype because it:

 Prevents the need for manual inspection of all output documents
 Consistently extracts elements from PDF documents
 Provides possible alternative solutions to address its limitations

The advertised list of PDFxStream features includes:
 Unicode text extraction, including support for Chinese, Japanese, and Korean (CJK) in

both horizontal and vertical writing modes
 Efficiently customizing PDF text extract formatting
 Complete support for embedded and standard fonts and character encodings
 Automated layout processing, providing a traversable PDF document model including

inferred block, line, column, and table structure
 Support for extracting text from "searchable image" PDFs
 Support for all varieties of rotated text
 Basic detection and inference of tabular data and a set of table-extraction utilities
 Decompression and decoding of dozens of PDF image types
 Automatic stitching of image tiles and strips

5

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

5 Prototype Design

This section talks about the design, limitations, and results of the prototype.

5.1 COMPONENTS AND FLOW

Figure 3 shows a high level view of the various components in the prototype and flow of data.

Figure 3: Component and Flow Diagram

The following is an explanation of the various steps in the process:

1. The application continuously monitors the ‘EFS_WEB’ folder. If a new PDF, the file is
placed in the directory and picked up for processing. For prototype purposes, only one
PDF file is processed at a time. If multiple PDF files are placed in the EFS-WEB folder,
they are processed sequentially. This is because the trial version of ‘PDFxStream’ limits
the application from processing files simultaneously.

2. The files being placed in the EFS-WEB folder could be one of two types:
a. Scanned PDFs
b. Text-based PDFs

6

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

The prototype is only concerned with PDFs that are text based and does not process
scanned PDFs. To detect if a PDF is scanned or text-based, one could open the properties
of the PDF file and check for the presence of fonts. If a PDF does not have any fonts, it
means it does not contain any text. The application uses a third party open source tool
called Poppler to verify if a PDF file has fonts.

3. Scanned PDF files (as determined in step 2) are copied from the ‘EFS-Web’ folder into
the ‘Scanned-PDF’ folder.

4. During this step, metadata related to the scanned PDF (as identified in step 2) is extracted
and stored in a MySQL database. The metadata includes:

a. File name
b. Generated By (the tool used to originally create the PDF)
c. Scanned Flag (set to true)
d. Created Date

5. In this step, the text-based PDF is parsed using PDFxStream. This generates a stream of
events that the application can listen to.

6. This is the step where the bulk of the application logic resides. The application listens to
the stream of events generated by PDFxStream and builds an HTML model using the
JSoup library. The reasons for using HTML encoding are:

a. HTML already has pre-defined elements and attributes to represent all the text
and metadata that needs to be represented in the output

b. Being such a ubiquitous language, HTML has several tools and libraries to parse
it as needed. This would make it easier to later convert into XML4IP format.

7. Step 7 is an optional step and is used to process formulae. This is discussed in detail in
later sections.

8. The HTML generated in step 6 is not a valid XML. In order to generate a valid XML as
the final output, a library called jTidy is used. jTidy cleans up malformed and faulty
HTML and generates a valid XML. The XML output can then be parsed using either an
XML parser or an HTML parser in further stages.

9. The generated XML from step 8 is copied in to ‘XML-Output’ folder.
10. The processed PDF file is moved to the ‘Processed-PDF’ folder.
11. If there are any exceptions while processing a PDF file, the file is moved to the ‘Error-

PDF’ folder.
12. During this final step, metadata related to the processed PDF is extracted and stored in a

MySQL database. The metadata includes:
a. File name
b. Generated By (the tool originally used to create the PDF)
c. Scanned Flag (set to false)
d. Message (Holds the exception message in case the PDF failed to process)
e. Created Date

7

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

5.2 OUTPUT FORMAT

The following table presents a mapping between the elements in the PDF and the corresponding
XHTML tags in the final output

PDF Element XHTML Elements and Attributes

Textual content

Underlines <u>

Strikethrough <s>

Bold

Italics <i>

Table <table><tr><td>

Images

Line Breaks

Page <div class=”page”>

Formula

Table 3: Mapping between PDF and XHTML Elements

5.3 CUSTOM PROCESSING

5.3.1 Image Processing

Support for image extraction has only recently been added in PDFxStream. PDFxStream
identifies all images and places them at the start of the page. It does not provide events for
identifying images in the order they appear on the page. As a result, if we do not add custom
logic, all images in the final output will be placed at the beginning of the page.

As part of the additional logic:
 The application stores the images and their locations when a page starts
 While processing other elements on the page, the application compares the position of an

element against the position of the stored image to determine if an image needs to be
placed before or after the element.

5.3.2 Table Processing

PDFxStream has partial support for table processing. It identifies tables, the number of rows in
each table, and the number of columns in each row. For symmetric tables, where each row has
the same number of columns and each column has the same number of rows, this information is
good enough.

8

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

Figure 4: PDFxStream - Table Structure

However, when cells span across multiple rows or columns (as shown in Figure 4), the output
does not match the input unless some custom logic is added.

To address this situation, the prototype has extra logic built in to determine the column span of
each cell. The logic is explained below:

 For each table, identify the row with the maximum number of columns. Make a note of
the cell width (‘minimum cell width’) and the number of columns in this row.

 While processing each row in the table, if the number of columns is less than the
maximum (as determined in previous step), for each cell in the current row, calculate the
width of the cell as a multiple of the ‘minimum cell width’. This multiple gives the
column span of the current cell.

Similar logic needs to be applied to calculate row span.

9

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

5.3.3 Formula Processing

Mathematical and Chemical formulae are challenging to extract. Formulae could be embedded in
PDF documents as text using a mix of regular / special characters and vector graphics as needed
to convey the information.

It is challenging to identify formulae because the formula can:

 Span multiple lines
 Have special Unicode characters (which cannot be consistently identified)
 Have graphics

In default mode, the application processes formulae as regular text. As a result, the output does
not identify the formulae with any special tags and may sometimes look like garbage text.

The application has to be run by setting a system property called ‘-Dmode=line’ to identify
formulae. The following logic is used to identify a formula and extract it when this mode is used.
This approach is neither consistent nor complete. However, it is something that could be
improved upon in future iterations to achieve consistency and reliability.

 While processing each line, determine the number of special characters in the line. For
the purpose of the prototype, any Unicode character with value greater than 256 is
considered a special character. (This assumption may not be correct and what should
constitute a special character is debatable, but the logic used to identify whether a
particular character is special is abstracted and could be adjusted as needed.)

 If the number of special characters in a line compared to the total number of characters in
the line is greater than a certain percentage (in our case this percentage is set to 10%), the
line is marked as being part of a formula.

 The above logic is applied for successive lines until a non-formula line is detected. At
this point, all previous lines are considered part of one single formula.

 Once a formula is identified, the coordinates of the bounding box for all combined lines
are calculated.

 The bounding box is then extracted as an image using Ghostscript.
 The extracted image is written to the XHTML output using Base64 encoding and tagged

with a class called ‘formula’ as shown below:
o

The following table shows snapshots taken under 3 different scenarios:

 Img1: Snapshot from original PDF
 Img2: Shows the output if no processing is applied for formulae
 Img3: Shows the output when a formula is detected and extracted as an image

10

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

Img1

Img2

Img3

Table 4: Formula Extraction Comparison

5.4 EXCEPTION HANDLING

Exceptions could happen in the application for several reasons:
 The PDF document is corrupted
 When decrypting an encrypted PDF document
 When the database server is down
 Some unexpected error in code

All the above exceptions and any other unexpected errors are handled by the system and
appropriately logged for further investigation. Furthermore, the PDF that failed processing is
moved to the error folder.

5.5 PERFORMANCE

The primary focus of the prototype was to extract data consistently. There was no effort spent on
increasing the performance of the system. Also, the trial version provided by PDFxStream allows
only synchronous processing, thus preventing us from building a prototype that could be used for
benchmarking.

5.6 XML4IP FORMAT

The goal of the prototype was to generate a standard XML document, which could be used in
further stages to generate an XML4IP compliant document. In this regard, the prototype
generates XHTML output, which is a standard format.

11

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

5.7 RESULTS

For testing the prototype, 150 client-provided PDF files were used. The prototype was used to
extract XML from all 150 files. The extracted content was manually compared to the original
PDF files. Below is a summary of the findings:

Sample Files Tested 150 files

Successful 121 files

Failed 29 files

Table 5: Test Results

Observations:

A failed file is one in which none of the content was extracted or part of the content was not
properly extracted.

It should be noted that the 121 successful files were mostly text-based with very limited special
characters.

The 29 files that failed had a combination of:
 Special characters
 Vector graphics
 Math and chemical formulae

5.8 LIMITATIONS

The following are some of the limitations of the prototype:

Vector Graphics

Vector Graphics is the use of geometrical shapes (such as points, lines, curves and shapes) to
represent images in computer graphics. As of this writing, PDFxStream can extract regular
images, but cannot extract vector graphics consistently. Extraction of vector graphics is a
complex process and requires advanced processing to extract individual images and stitch them
together. According to the team at PDFxStream, they are working on a solution for extracting
vector graphics and plan to release a patch in the first quarter of 2015.

Special Characters

PDFxStream extracts the Unicodes that correspond to each of the characters found in a PDF.
These Unicodes represent text in the extracted output. However, PDFxStream fails to retrieve the
Unicodes consistently for special characters. This could be because the PDF uses:

 Character sets which map to Unicodes from private user area

12

Text2PTO Proof of Concept White Paper
Version 1.0

March 24, 2015

http://en.wikipedia.org/wiki/Private_Use_Areas
 A custom character set and does not provide mapping between the character codes and

Unicodes
http://blogs.adobe.com/insidepdf/2008/07/text_content_in_pdf_files.html

At this point, it is not clear if there is a resolution for the two scenarios above. The PDFxStream
team has been notified about this and they are looking into it.

Math and Chemical Formulae

Though the prototype attempted to detect and extract math and chemical formulae, the solution is
not complete. Please refer to section 5.3.3 for details.

List Processing

List detection is not built into PDFxStream and there are no indications it will be supported in
the future. This needs to be custom built into the application.

5.9 CONCLUSION

Although the presented solution has some limitations, it takes the right approach towards
achieving the objectives. Limitations may be addressed in the long term by extending the Java
application and using future releases of PDFxStream to customize / enhance the product to suit
USPTO’s needs.

Recommendations:
 Obtain support from PDFxStream to fix issues with Vector Images and Special

Characters
 Implement additional logic to handle Chemical / Math formula
 Implement custom logic to extract List and Superscript / Subscript information

13

http://blogs.adobe.com/insidepdf/2008/07/text_content_in_pdf_files.html
http://en.wikipedia.org/wiki/Private_Use_Areas

